
Late Breaking Abstract

Meta-Neural Cellular Automata
Meet Barot

Mythos Scientific, New York, USA

Objectives

Training deep neural networks using backprop-
agation and gradient-based methods is com-
putationally expensive. Biological neurons, on
the other hand, quite efficiently learn through
signals transmitted locally via synapses from
other neighboring neurons. They are also able
to grow new connections and can be robust to
damage. Our general aim is to learn a local
learning rule that demonstrates these proper-
ties for artificial neural networks.

Introduction

Neural cellular automata (NCA) models have
been successful at efficient image generation soley
through local update rules, demonstrating stabil-
ity over many updates and robustness to pertur-
bations [1]. In this work, we introduce a meta-
neural cellular automata (MetaNCA) model to
evolve neural network weights to solve a task us-
ing local rules defined by another neural network.
Once trained, the local rule network allows us
to efficiently sample many task networks of arbi-
trary feedforward architectures without backprop-
agation.

Method Description

Problem setup.
• Dataset (x, y) ∈ D for a task T .
• Task neural network that makes predictions for

this task ŷ = T (θT ; x) with weights w ∈ θT .
• Each weight w has a hidden state vector

h⃗ ∈ HT .
• Updates to θ

(t)
T and H

(t)
T are given by a separate

local rule network R, parametrized by θR.
Local rule network inputs.
We construct a “neighborhood perception vector”
as the input to the local rule network R for a
given weight w. We remove any dependence on
the number of weights by averaging all the for-
ward neighboring weights wk of w and their hid-
den states:
wf = 1

|Nf(w)|
∑

wk∈Nf

wk h⃗f = 1
|Nf (⃗h)|

∑
h⃗k∈Nf

h⃗k

wf and h⃗f constitute our “forward signals”, and
wb and h⃗b are “backward signals” which we con-
catenate:

vperception = [w, h⃗, wf , h⃗f , wb, h⃗b]
The updates to w and h⃗ for the next timestep t+1
are finally given by the local rule network R:

∆w(t+1), ∆h⃗(t+1) = R(θR; vperception)
The local rule network R is trained via backprop-
agation over many updates to the task network;
the task network is only changed via local rule up-
date.

Figure 1:Illustration of the forward and backward neighbor-
hoods Nf and Nb of an example weight w.

Architecture generalization

Figure 2:Performances of task networks trained using a lo-
cal rule network to test generalization across architectures.
Architectures that were included in the meta-training phase
are indicated with red rectangles. Performances are on 20%
randomly split test set from MNIST, averaged across 100
model samples per architecture.

Stability

We measure the ability of a trained local rule net-
work to update a task network as many times as
possible without breaking down the performance.
Similar to the sample-pooling strategy in [1], we
sample models from the prior metaepoch to be the
initial state for the next meta-epoch along with
reinitialized models. In Table 1 we see an increase
in stability over many epochs with sample-pooling.

Epochs to train Epochs within 10%
Non-SP 5 13
SP 5 496

Table 1:Stability experiment. "SP" = "Sample Pooled".
"Epochs to train" indicates number of local rule updates to
arrive at the minimum training loss, "Epochs within 10%"
indicates how many updates are done after the minimum is
reached, where the loss is still within 10% of the minimum.
Experiment done on iris dataset 80% training split.

Contact Information

• Web: https://www.meetbarot.com
• Web: https://www.mythos.science
• Email: meetbarot@nyu.edu

Robustness

Lastly we define a type of perturbation, zero-
out, as setting a set of random weights as well as
an entire layer of the task network to zero, to see
if the local rule network grows back the weights to
recover the performance.

Figure 3:Plot of the effects of zero-out while updating a task
network with a local rule network trained with zero-out con-
ditions, where a random layer is set to 0 and 30% of the rest
of the weights are set to 0. Performance is on the MNIST
dataset.

Conclusion

We have shown the ability of the local rules
learned by MetaNCA to generalize across archi-
tectures, to be stable for many local updates, and
able to recover from setting much of the network
to zero after reaching maximum performance.
This method allows for fast sampling of models of
architectures not seen during training. However,
the local rule updates are not conditioned directly
on the data, and therefore any generalization of a
local rule to new tasks would be limited at best.
In the future we wish to add a dependence of the
local rule on the data, incorporating signals from
activations and loss values, similar to [2] except
not explicitly relying on ordering of updates.

References

[1] Alexander Mordvintsev, Ettore Randazzo, Eyvind
Niklasson, and Michael Levin.
Growing neural cellular automata.
Distill, 5(2):e23, 2020.

[2] Ettore Randazzo, Eyvind Niklasson, and Alexander
Mordvintsev.
Mplp: Learning a message passing learning protocol.
arXiv preprint arXiv:2007.00970, 2020.

https://www.meetbarot.com
https://www.mythos.science
mailto:meetbarot@nyu.edu

