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Abstract

Training deep neural networks using backpropagation and
gradient-based methods is computationally expensive. Bi-
ological neurons, on the other hand, quite efficiently learn
through signals transmitted locally via synapses from other
neighboring neurons. They are also able to grow new con-
nections and can be robust to damage. Our general aim is
to learn a local learning rule that demonstrates these proper-
ties for artificial neural networks. Neural cellular automata
(NCA) models have been successful at efficient image gener-
ation soley through local update rules, demonstrating stability
over many updates and robustness to perturbations (Mordv-
intsev et al.| |2020). In this preliminary work, we introduce
a meta-neural cellular automata (MetaNCA) model to evolve
neural network weights to solve a task using local rules de-
fined by another neural network. Once trained, the local rule
network allows us to efficiently sample many task networks
of arbitrary feedforward architectures without backpropaga-
tion. We present experiments demonstrating the local rule’s
generalization across architectures, stability over many local
rule updates and robustness to perturbations of setting ran-
dom weights or entire layers to zero.

Method Description

Problem setup. We have a dataset (z,y) € D for a task
T, and a corresponding task neural network that makes pre-
dictions for this task § = T'(67; z). The task network T has
weights w{; € O, where L is a layer of the task network
and 7 and j are indices of the weight matrix for layer L. In

addition, for each weight w;;, the task network also has a
hidden state vector h;;.

The updates to H(Tt) and H,E,f ) are given by a separate local
rule network R, parametrized by 0. For a given weight w;;,
we take the neighboring weights and hidden state vectors of
w;; as the input to the local rule network R.

Local rule network inputs. We construct a “neighbor-
hood perception vector” as the input to the local rule network
R in the following way. We start with a particular weight w
and its corresponding hidden state h. To give a sense of di-
rection for the neighborhood of w, we define the “forward”

Figure 1: Illustration of the neighborhood of an example
weight w.

neighbors and “backward” neighbors as those weights con-
nected to the forward and backward neurons of w; see Fig-
ure[T]for an illustration. In order for the local rule network to
be able to output updates for any weight in any layer in the
task network, we remove the dependence on any particular
number of weights by averaging all the forward neighboring
weights wy, of w and their hidden states:
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wy and h ¢ constitute our “forward signals”. We do the
same for the backward neighboring weights and hidden
states, obtaining w; and ﬁb. We concatenate all these com-
ponents in this way:

Uperception = [w7 ha wg, hf7 Wy, hb]

The updates to w and h for the next timestep ¢ + 1 are
finally given by the local rule network R:

Aw(t+1)’ A}_i(tJrl) = R(QR, Uperception)

Training the local rule neural network. For our experi-
ments on the Iris (Fisher, |1936) and MNIST (Deng, [2012)



Epochs to train  Epochs within 10%

Non-sample pooled 5 13
Sample Pooled 5 496

Table 1: Stability experiment. “Epochs to train” indicates
number of local rule updates to arrive at the minimum loss,
“Epochs within 10%” indicates how many updates are done
after the minimum is reached, where the loss is still within
10% of the minimum.

datasets, we use a cross-entropy classification loss. We up-
date the weights of the local rule neural network by back-
propagating the gradient through the task neural network
through to the local rule neural network over many epochs
(i.e., local rule updates) of the task network. We only up-
date the weights of the local rule network in this way; the
task network is exclusively updated by the local rule net-
work outputs. To simulate asynchronous updates, we apply
the local rule updates stochastically to 80% of weights of the
task net per local rule update for our experiments.

Experiments

We investigate MetaNCA in architecture generalization abil-
ity, stability of the task network over many local rule net-
work updates, and robustness to perturbations of task net-
work weights. We report our findings in architecture gen-
eralization experiments on the MNIST dataset, and stability
and robustness experiments on the Iris dataset.

Architecture generalization. We measure the ability of a
trained local rule network to train task networks of archi-
tectures not included in its training set of architectures. We
show a heatmap of performances for various training and
testing architectures for the MNIST dataset in Figures

Stability. We measure the ability of a trained local rule
network to continuously train a task network for as long as
possible beyond the meta-training setting of updating for a
fixed number of epochs, without breaking down the perfor-
mance of the model. We measure the number of epochs
after reaching minimum training loss before the task net-
work deviates from the minimum significantly. Similar to
the sample-pooling strategy in [Mordvintsev et al.| (2020),
we take samples of previous models after a number of it-
erations to be the initial state for the next meta-epoch, with
fully reinitialized models included as well. We measure this
for both sample pooled and non-sample pooled settings in
the Iris dataset, and as observed in Table , we see an increase
in stability over many epochs with sample-pooling.

Robustness. Lastly we define one type of perturbation,
zero out, as setting a set of random weights as well as an en-
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Figure 2: Heatmap of performances of task networks trained
using a local rule network to test generalization across ar-
chitectures. The only architectures that were included in the
meta-training phase are indicated with red rectangles. These
performances are on the MNIST dataset randomly split into
80% training and 20% test sets, averaged across 100 model
samples per architecture.

tire layer of the task network to zero, to see if the local rule
network grows back the weights to recover the performance.
We perform this experiment on the Iris dataset for both local
rule networks trained in these conditions and those without
these conditions present in training, where sample-pooled
models have this perturbation applied. With no zero out con-
ditions in training, the performance of the model quickly
suffers and does not recover. However, we observe that
when including zero out conditions in training, where we set
one layer fully to zero and 30% of the other layers’ weights
to zero between metaepochs, the resulting trained local rule
network is able to continuously recover the original accu-
racy from 20 zero out perturbations over the course of 100
epochs.

Conclusion

We have shown the ability of the local rules learned by
MetaNCA to generalize across architectures, to be stable for
many local updates, and able to recover from setting much of
the network to zero after reaching maximum performance.

This method allows for fast sampling of models of archi-
tectures not seen during training. However, the local rule
updates are not conditioned directly on the data, and there-
fore any generalization of a local rule to new tasks would be
limited at best. In the future we wish to add a dependence
of the local rule on the data, incorporating signals from ac-
tivations and loss values, similar to [Randazzo et al.| (2020)
except not explicitly relying on ordering of updates.
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