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Figure 2:Illustration of the forward and backward neighbor-

hoods Ny and N, of an example weight w.

Figure 3:Heatmaps of grown dense networks’ MNIST perfor-

Method Description mances, with the training architectures in red rectangles.

Self-organized Convolutional Neural Networks

o Dataset (x,y) € D for a task T.

e Task neural network that makes predictions for Filters (1st layer) Feature map  Filters (2nd layer) Feature map Filters (3rd layer)
this task § = T'(0p; ) with weights w € 0. N

e Each weight w has a hidden state vector BTN
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e Let w’s forward and backward neighborhood be

denoted as N¢(w) and Ny(w).
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e R is trained by updating sampled weights from
01, for several update steps, and calculating the

Figure 4:Diagram showing a weight w and its neighborhood in an example CNN's first 3 layers.

loss. The gradient is calculated using Mean Validation Accuracy for Convolutional Architectures
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backpropagation through time.
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eregates information from forward and backward neighbor- * Email: meet@mythos.smence

hoods with linear attention. Rotational Positional Embed-
ding (RoPE)[2] is used to include relative position informa-
tion between weights, corresponding to several directional-
ities: layer, forward neuron, backward neuron, horizontal

and vertical kernel position.
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