Late Breaking Abstract

Self-Organized CNNs using MetaNCA with Attention

Meet Barot
Mythos Scientific, New York, USA

Objectives , L o |
Archltecture generallzatlon Mean validation accuracy for dense architectures
. . 1.0

In prior work [1], we introduced Meta-Neural increases with more training

[lular Autom MetaNCA : > 0.9
Cellular Automata (Meta .C) as a way .to architectures . }
learn the rules of self-organization for artificial g 0 8
neural networks. The local rules are given by a : ;
neural network that learns to update weights of 5 73
a “task neural network” to perform a classifica- S 0.6
tion task. Once trained, the local rule network o
allows us to efficiently sample many task net- 0 0 50 60 70 80 90 >
works of arbitrary architectures without back- X1 “

)) 80 1 @85 0.54 096 0.96 0.96 096 0.96
propagation. In this work, we present a novel > o | oss T I N
Weight Transtormer architecture for the local 9 60 085 095 0% 0% 0% 0% 0% g 8
rule network, which uses linear attention to ag- £ 50755 . ;

. i i i "é' 40 4 085 0.95 0.96 0.96 0.96 0.9& 0.96 0.7 5
oregate signals from neighboring weights and > 05 o0os [oac] 0% oo 0% oo g
hidden states. We show that the Weight Trans- S 095 05 09 035 095 05 05 0.6
former can grow the weights of unseen convolu- " R

095 095 0.95 095 0.95 0.95 0.5

I
30 40 50 60 70 80 90
Hidden units in layer 1 X

tional architectures of 2 million parameters to
reach 97% accuracy on the MNIST dataset.

Figure 2:Illustration of the forward and backward neighbor-

hoods Ny and N, of an example weight w.

Figure 3:Heatmaps of grown dense networks’ MNIST perfor-

Method Description mances, with the training architectures in red rectangles.

Self-organized Convolutional Neural Networks

o Dataset (x,y) € D for a task T.

e Task neural network that makes predictions for Filters (1st layer) Feature map Filters (2nd layer) Feature map Filters (3rd layer)
this task § = T'(0p;) with weights w € 0. N

e Each weight w has a hidden state vector BTN
]; c Hp. L RS N T

e Let w’s forward and backward neighborhood be

denoted as N¢(w) and Ny(w).

t t . i
e Updates to H(T) and Hﬁ are given by a separate 4
. No(w) —w | Niw RN 4
local rule network R, parametrized by 0. :

e R is trained by updating sampled weights from
01, for several update steps, and calculating the

Figure 4:Diagram showing a weight w and its neighborhood in an example CNN's first 3 layers.

loss. The gradient is calculated using Mean Validation Accuracy for Convolutional Architectures
: : Kernel size = 3 Kernel size = 4 Kernel size = 5
backpropagation through time.
ulglaE 0. 140 2800550230 18027020011 ulglae 0. 23015027 031041050064 028030 gl 0. 18 020029038 051004 R lapeira: i 48 1.0
£ £ L
.,u_._r] Bl 0.12 037041054 022016026 0.190.13 .,'":q Bl 0260210310 36046 057 066032030 .,'"_._r] BRI 0. 18024031041 054 v SRR FRiR: L3I0 47 0.8 >
= = = d
W 0 12 0330 Pd0590220120250.170.14 =N 8 0.24024 036042047 0570650320032 Il o8 0.20 0.29 0.350.37 0.57 {].E?-EE 051 o
T T 3 0.6 5
Feedforward sl (1. 12 0 33pREN06T 0220130240200 160 gt 021 0260 380409045057 062028020 -0 15029035041 O61eR::ReRrae iz 4] —
network = = o 0.4 v
T ﬁ pE 0. 15 040N 0680 22015024021 0.13 ﬁ rp N 0. 24 038039053044 054061 025020 ﬁ PN 0. 200 2B 037045 Da0iE: (SR N0.56 0.29] E
i
; 150 -Dkt= |:|.-45 0.500.16 0.15 0.16 0.18 0.14 = GO 0.23043043045033039047022020 ; LW 0.230.31036040046066067 044023 0.2 =
w Ny as ap w w @
T - L 0.140330610380150160160.180.14 - DL 0210360320360 300260 32021012 - e 022 0270300300460470400300.15 0.0
: Concatenate
A 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Conv filter multiplier m Conv filter multiplier m Conv filter multiplier m
" Weight) " Weight)
transformer transformer . . o . R . .
encoder with encoder with Figure 5:Heatmaps of MNIST performances of grown CNNs, with training architectures indicated in red rectangles. m is
linear cross linear cross
__attention __attention the multiplier for the number of filters for a 3-layer CNN with 32*m, 64™m, and 128*m filters. h is the layer dimension
| | after the flattened outputs after the last convolutional layer, before the output layer.
Np(w) Ni(w)
(whole
vector
dropout)
Wo1 Wp2(Wp3|Woa| W Wit Wi2| Wi | Wig Contact Information References
Np1 Np2 Nb3 | hba hw i1 hi2 | hiz | hia 1.
‘ . .
Web: https://www.meetbarot.com 1] Meet Barot.
o Web: https://www.mythos.science Meta-neural cellular automata, 2024.

Figure 1:The Weight Transformer architecture which ag- Late-breaking abstract poster presented at ALIFE2024

in Copenhagen. Available at
https://meetbarot.com/alife 2024 poster.pdf.

2] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu.
Roformer: Enhanced transtormer with rotary position

embedding.
Neurocomputing, 568:127063, 2024.

eregates information from forward and backward neighbor- * Email: meet@mythos.smence

hoods with linear attention. Rotational Positional Embed-
ding (RoPE)[2] is used to include relative position informa-
tion between weights, corresponding to several directional-
ities: layer, forward neuron, backward neuron, horizontal

and vertical kernel position.

https://www.meetbarot.com
https://www.mythos.science
mailto:meet@mythos.science
https://meetbarot.com/alife_2024_poster.pdf

