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Unsupervised learning is crucial for biological data

Most data in biology is unlabeled

- Experiments are expensive, error-prone
- Supervised learning algorithms are limited by this

- Most label sets are incomplete

- We need tools to get functional categories of proteins whether they have
labels or not

- Discovery of these categories can enable us to infer new GO terms, correct
old terms, and create entire ontologies
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https://blog.insightdatascience.com/graph-based-machine-learning-6e2bd8926a0



Clustering with neural networks

- A neural network trained to cluster proteins would be able to be trained

batchwise and have constant time inference for a new protein
For methods like spectral clustering, inference requires computing pairwise similarities to
previous samples

- Using class activation maps, we would be able to highlight specific parts of
the protein that correspond to these hypothetical classes

- Feature learning can be combined with the clustering process in neural
networks



Learning to classify images without labels (SCAN)
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Van Gansbeke, Wouter, et al. "Learning To
Classify Images Without Labels." arXiv
preprint arXiv:2005.12320 (2020).



Learning to classify images without labels (SCAN)
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Fig. 1: Images (first column) and their Fig.2: Neighboring samples tend to be
nearest neighbors (other columns) [51]. instances of the same semantic class.



Learning to classify images without labels (SCAN)

Step 2: Train previous neural network, now with a softmax output,
with the following loss:
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Van Gansbeke, Wouter, et al. "Learning To
Classify Images Without Labels." arXiv
preprint arXiv:2005.12320 (2020).



Learning to classify images without labels (SCAN)

Dataset
Metric

CIFAR10 CIFAR100-20

Supervised

Pretext [7] + K-means
SCAN" (Avg + Std)
SCAN' (Avg + Std)
SCANT' (Best)

65.9 £ 5.7
81.8+0.3
87.6 £0.4

59.8+ 2.0
71.2+04
8.7+0.b

o9+ 3.7
66.5 £+ 0.4
75.8+ 0.7

39:54: 19
422+ 3.0
45.9 + 2.7

40.24+1.1 23.9+1.1
44.1+1.0
46.8 £ 1.3

26.7+1.3
30.1£21

STL10
ACC NMI ARI
80.6 65.9 63.1

65.8+5.1 60.4+2.5 50.6+4.1

75.5+20 6564+12 59.0+1.6

76.7+19 68.0+1.2 61.6+1.8
80.9 69.8 64.6

SCAN' (Overcluster)
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76.8 1.1 65.6 0.8 58.6+1.6




Pfam Experiment --- seqSCAN

- Using self-supervised sequence model to extract useful features from
sequence (language model trained on 10 million protein sequences from
Pfam)

- Dataset of 10 protein families, total ~6000 proteins

- Evaluate clusters obtained using Normalized Mutual Information (NMI) with
respect to protein family labels
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Using SCAN loss to cluster proteins using learned features

- Train a single-layer model on the learned features with softmax output with
the SCAN loss function:
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NMI during “SeqSCAN” Training
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PCA+K-means on e

sequence features °5°'§

o NMI: 0.61 0.78

0.76 1 LV
0.74 ’J '
072 v

0.7 W

1(0;C) 0.06 L
HOQ)+H©))/2  og

NMI

NMI(Q,C) =

¢ 10 20 30 40 50 60 70 &0 90 100

Epoch



Proportions of each Protein Family

Random Predictions
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Cluster Assignment

Putative mucin or carbohydrate-binding module

SAM dependent carboxyl methyltransferase

Outer membrane protein (OmpH-like)

NOT2 / NOT3 / NOT5 family

CHD5-like protein

Protein of unknown function (DUF986)

Fas apoptotic inhibitory molecule (FAIM1)

Protein of unknown function (DUF2501)

25S rRNA (adenine(2142)-N(1))-methyltransferase, Bmt2
TATA element modulatory factor 1 TATA binding



Proportions of each Protein Family
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Protein Family Distributions in Clusters
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Matching cluster assignments with labels

- Bipartite matching: maximizing accuracy of the cluster assignments with
respect to their protein families

Cluster Assignments Protein Families




Proportions of each Protein Family

Protein Family Distributions in Clusters
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Scaling up to PfamA

- Training clustering model on 16 million proteins (15k Pfam families)
- Test on 1.8 million proteins (13k families)

PCA+K-means | seqSCAN
Training NMI 0.499 0.516
Test NMI 0.523 0.541
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